Google Professional-Machine-Learning-Engineer Question Answer
You are using Kubeflow Pipelines to develop an end-to-end PyTorch-based MLOps pipeline. The pipeline reads data from BigQuery,
processes the data, conducts feature engineering, model training, model evaluation, and deploys the model as a binary file to Cloud Storage. You are
writing code for several different versions of the feature engineering and model training steps, and running each new version in Vertex Al Pipelines.
Each pipeline run is taking over an hour to complete. You want to speed up the pipeline execution to reduce your development time, and you want to
avoid additional costs. What should you do?