Weekend Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ac4s65

You are developing an image recognition model using PyTorch based on ResNet50 architecture Your code...

You are developing an image recognition model using PyTorch based on ResNet50 architecture Your code is working fine on your local laptop on a small subsample. Your full dataset has 200k labeled images You want to quickly scale your training workload while minimizing cost. You plan to use 4 V100 GPUs What should you do?

A.

Create a Google Kubernetes Engine cluster with a node pool that has 4 V100 GPUs Prepare and submit a TFJob operator to this node pool.

B.

Configure a Compute Engine VM with all the dependencies that launches the training Tram your model with Vertex Al using a custom tier that contains the required GPUs.

C.

Create a Vertex Al Workbench user-managed notebooks instance with 4 V100 GPUs, and use it to tram your model.

D.

Package your code with Setuptools and use a pre-built container. Train your model with Vertex Al using a custom tier that contains the required GPUs.

Professional-Machine-Learning-Engineer PDF/Engine
  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions
buy now Professional-Machine-Learning-Engineer pdf
Get 65% Discount on All Products, Use Coupon: "ac4s65"