Winter Sale Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 8w52ceb345

You architect a system to analyze seismic data.

You architect a system to analyze seismic data. Your extract, transform, and load (ETL) process runs as a series of MapReduce jobs on an Apache Hadoop cluster. The ETL process takes days to process a data set because some steps are computationally expensive. Then you discover that a sensor calibration step has been omitted. How should you change your ETL process to carry out sensor calibration systematically in the future?

A.

Modify the transformMapReduce jobs to apply sensor calibration before they do anything else.

B.

Introduce a new MapReduce job to apply sensor calibration to raw data, and ensure all other MapReduce jobs are chained after this.

C.

Add sensor calibration data to the output of the ETL process, and document that all users need to apply sensor calibration themselves.

D.

Develop an algorithm through simulation to predict variance of data output from the last MapReduce job based on calibration factors, and apply the correction to all data.

Professional-Data-Engineer PDF/Engine
  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions
buy now Professional-Data-Engineer pdf
Get 60% Discount on All Products, Use Coupon: "8w52ceb345"