The best approach to maximize transcription accuracy during the development phase is to create a custom vocabulary file containing each product name with phonetic pronunciations, and use it with Amazon Transcribe to perform the ASR customization. A custom vocabulary is a list of words and phrases that are likely to appear in your audio input, along with optional information about how to pronounce them. By using a custom vocabulary, you can improve the transcription accuracy of domain-specific terms, such as product names, that may not be recognized by the general vocabulary of Amazon Transcribe. You can also analyze the transcripts and manually update the custom vocabulary file to include updated or additional entries for those names that are not being correctly identified.
The other options are not as effective as option C for the following reasons:
Option A is not suitable because Amazon Lex is a service for building conversational interfaces, not for transcribing voicemail messages. Amazon Lex also has a limit of 100 slots per bot, which is not enough to accommodate the 200 unique product names required by the company.
Option B is not optimal because it relies on the word confidence scores in the transcript, which may not be accurate enough to identify all the mis-transcribed product names. Moreover, automatically creating or updating a custom vocabulary file may introduce errors or inconsistencies in the pronunciation or display of the words.
Option D is not feasible because it requires a large amount of training data to build a custom language model. The company only has 4,000 words of Amazon SageMaker Ground Truth voicemail transcripts, which is not enough to train a robust and reliable custom language model. Additionally, creating and updating a custom language model is a time-consuming and resource-intensive process, which may not be suitable for the development phase where frequent changes are expected.
Amazon Transcribe – Custom Vocabulary
Amazon Transcribe – Custom Language Models
[Amazon Lex – Limits]