Summer Special Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 8w52ceb345

A company has an ecommerce website with a product recommendation engine built in TensorFlow.

A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.

Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.

Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)

A.

Configure the endpoint to use Amazon Elastic Inference (EI) accelerators.

B.

Create a new endpoint configuration with two production variants.

C.

Configure the endpoint to automatically scale with the Invocations Per Instance metric.

D.

Deploy a second instance pool to support a blue/green deployment of models.

E.

Reconfigure the endpoint to use burstable instances.

MLS-C01 PDF/Engine
  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions
buy now MLS-C01 pdf
Get 60% Discount on All Products, Use Coupon: "8w52ceb345"