Given
Market value of equity E=$7mE = \$7mE=$7m
Market value of debt D=$5mD = \$5mD=$5m
Total value V=D+E=12mV = D+E = 12mV=D+E=12m
WACC (geared) =9.375%= 9.375\%=9.375%
Tax rate T=15%T = 15\%T=15%
Let gearing in terms of D/ED/ED/E:
g=DE=57=0.7143g = \frac{D}{E} = \frac{5}{7} = 0.7143g=ED=75=0.7143
Under Modigliani & Miller with tax, the relationship between WACC of a geared firm (WACC_g) and the ungeared cost of equity kuk_uku is:
WACCg=ku [1+g(1−T)]1+g\text{WACC}_g = \frac{k_u \,[1 + g(1-T)]}{1+g}WACCg=1+gku[1+g(1−T)]
Rearrange for kuk_uku:
ku=WACCg⋅1+g1+g(1−T)k_u = \text{WACC}_g \cdot \frac{1+g}{1+g(1-T)}ku=WACCg⋅1+g(1−T)1+g
Substitute:
g=0.7143g = 0.7143g=0.7143
1+g=1.71431+g = 1.71431+g=1.7143
g(1−T)=0.7143×0.85=0.6071g(1-T)=0.7143 \times 0.85 = 0.6071g(1−T)=0.7143×0.85=0.6071
1+g(1−T)=1.60711+g(1-T)=1.60711+g(1−T)=1.6071
ku=0.09375×1.71431.6071≈0.10=10%k_u = 0.09375 \times \frac{1.7143}{1.6071} \approx 0.10 = 10\%ku=0.09375×1.60711.7143≈0.10=10%
So the ungeared cost of equity is 10%.