Summer Special Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 8w52ceb345

A Generative Al Engineer has created a RAG application to look up answers to questions...

A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author’s web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user’s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.

Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)

A.

Change embedding models and compare performance.

B.

Add a classifier for user queries that predicts which book will best contain the answer. Use this to filter retrieval.

C.

Choose an appropriate evaluation metric (such as recall or NDCG) and experiment with changes in the chunking strategy, such as splitting chunks by paragraphs or chapters.

Choose the strategy that gives the best performance metric.

D.

Pass known questions and best answers to an LLM and instruct the LLM to provide the best token count. Use a summary statistic (mean, median, etc.) of the best token counts to choose chunk size.

E.

Create an LLM-as-a-judge metric to evaluate how well previous questions are answered by the most appropriate chunk. Optimize the chunking parameters based upon the values of the metric.

Databricks-Generative-AI-Engineer-Associate PDF/Engine
  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions
buy now Databricks-Generative-AI-Engineer-Associate pdf
Get 60% Discount on All Products, Use Coupon: "8w52ceb345"