Comprehensive and Detailed Explanation:
The original code has several issues:
It references a variable answer that is undefined.
The function is annotated to return a str, but the logic attempts numeric multiplication.
The UDF return type is declared as T.IntegerType() but the function performs a floating-point operation, which is incompatible.
Option B correctly:
Uses DoubleType to reflect the fact that the multiplication involves a float (3.14159).
Declares the input as float, which aligns with the multiplication.
Returns a float, which matches both the logic and the schema type annotation.
This structure aligns with how PySpark expects User Defined Functions (UDFs) to be declared:
"To define a UDF you must specify a Python function and provide the return type using the relevant Spark SQL type (e.g., DoubleType for float results)."
Example from official documentation:
from pyspark.sql.functions import udf
from pyspark.sql.types import DoubleType
@udf(returnType=DoubleType())
def multiply_by_pi(x: float) -> float:
return x * 3.14159
This makes Option B the syntactically and semantically correct choice.