New Year Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ac4s65

A manufacturing company uses AWS Glue jobs to process IoT sensor data to generate predictive...

A manufacturing company uses AWS Glue jobs to process IoT sensor data to generate predictive maintenance models. A data engineer needs to implement automated data quality checks to identify temperature readings that are outside the expected range of -50°C to 150°C. The data quality checks must also identify records that are missing timestamp values.

The data engineer needs a solution that requires minimal coding and can automatically flag the specified issues.

Which solution will meet these requirements?

A.

Create an AWS Glue DataBrew project to profile the sensor data. Define completeness rules for timestamps. Set up numeric range validation for temperature values.

B.

Use AWS Glue's Data Quality rules and machine learning (ML)-based anomaly detection to identify missing timestamps and to detect temperature anomalies.

C.

Create an AWS Lambda function to scan the sensor data files to validate temperature ranges. Use AWS Glue Data Catalog tables to check timestamp completeness.

D.

Create an AWS Glue DynamicFrame that uses a custom data quality operator to profile the sensor data. Use Amazon SageMaker Data Wrangler transforms to validate timestamps and temperature ranges.

Data-Engineer-Associate PDF/Engine
  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions
buy now Data-Engineer-Associate pdf
Get 65% Discount on All Products, Use Coupon: "ac4s65"