Weekend Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: ac4s65

A company builds a new data pipeline to process data for business intelligence reports.

A company builds a new data pipeline to process data for business intelligence reports. Users have noticed that data is missing from the reports.

A data engineer needs to add a data quality check for columns that contain null values and for referential integrity at a stage before the data is added to storage.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon SageMaker Data Wrangler to create a Data Quality and Insights report.

B.

Use AWS Glue ETL jobs to perform a data quality evaluation transform on the data. Use an IsComplete rule on the requested columns. Use a ReferentialIntegrity rule for each join.

C.

Use AWS Glue ETL jobs to perform a SQL transform on the data to determine whether requested columns contain null values. Use a second SQL transform to check referential integrity.

D.

Use Amazon SageMaker Data Wrangler and a custom Python transform to create custom rules to check for null values and referential integrity.

Data-Engineer-Associate PDF/Engine
  • Printable Format
  • Value of Money
  • 100% Pass Assurance
  • Verified Answers
  • Researched by Industry Experts
  • Based on Real Exams Scenarios
  • 100% Real Questions
buy now Data-Engineer-Associate pdf
Get 65% Discount on All Products, Use Coupon: "ac4s65"