Solution :
Step 1 : Create a file first using Hue in hdfs.
Step 2 : Write all valid regular expressions sysntex for checking whether records are having valid dates or not.
val regl =......(\d+)\s(\w{3})(,)\s(\d{4}).......r//11 Jan, 2015
val reg2 =......(\d+)(U)(\d+)(U)(\d{4})......s II 6/17/2014
val reg3 =......(\d+)(-)(\d+)(-)(\d{4})""".r//22-08-2013
val reg4 =......(\w{3})\s(\d+)(,)\s(\d{4})......s II Jan 11, 2015
Step 3 : Load the file as an RDD.
val feedbackRDD = sc.textFile("spark9/feedback.txt"}
Step 4 : As data are pipe separated , hence split the same. val feedbackSplit = feedbackRDD.map(line => line.split('|'))
Step 5 : Now get the valid records as well as , bad records.
val validRecords = feedbackSplit.filter(x => (reg1.pattern.matcher(x(1).trim).matches|reg2.pattern.matcher(x(1).trim).matches|reg3.pattern.matcher(x(1).trim).matches | reg4.pattern.matcher(x(1).trim).matches))
val badRecords = feedbackSplit.filter(x => !(reg1.pattern.matcher(x(1).trim).matches|reg2.pattern.matcher(x(1).trim).matches|reg3.pattern.matcher(x(1).trim).matches | reg4.pattern.matcher(x(1).trim).matches))
Step 6 : Now convert each Array to Strings
val valid =vatidRecords.map(e => (e(0),e(1),e(2)))
val bad =badRecords.map(e => (e(0),e(1),e(2)))
Step 7 : Save the output as a Text file and output must be written in a single tile,
valid.repartition(1).saveAsTextFile("spark9/good.txt") bad.repartition(1).saveAsTextFile("sparkS7bad.txt")