Word Embedding describes a task in natural language processing (NLP) where:
A.
Words are converted into numerical vectors.
B.
Words are featurized by taking a histogram of letter counts.
C.
Words are featurized by taking a matrix of bigram counts.
D.
Words are grouped together into clusters and then represented by word cluster membership.
The Answer Is:
A
This question includes an explanation.
Explanation:
Word embedding is a task in natural language processing (NLP) where words are converted into numerical vectors that represent their meaning, usage, or context. Word embedding can help reduce the dimensionality and sparsity of text data, as well as enable various operations and comparisons among words based on their vector representations. Some of the common methods for word embedding are:
One-hot encoding: One-hot encoding is a method that assigns a unique binary vector to each word in a vocabulary. The vector has only one element with a value of 1 (the hot bit) and the rest with a value of 0. One-hot encoding can create distinct and orthogonal vectors for each word, but it does not capture any semantic or syntactic information about words.
Word2vec: Word2vec is a method that learns a dense and continuous vector representation for each word based on its context in a large corpus of text. Word2vec can capture the semantic and syntactic similarity and relationships among words, such as synonyms, antonyms, analogies, or associations.
GloVe: GloVe (Global Vectors for Word Representation) is a method that combines the advantages of count-based methods (such as TF-IDF) and predictive methods (such as Word2vec) to create word vectors. GloVe can leverage both global and local information from a large corpus of text to capture the co-occurrence patterns and probabilities of words.
AIP-210 PDF/Engine
Printable Format
Value of Money
100% Pass Assurance
Verified Answers
Researched by Industry Experts
Based on Real Exams Scenarios
100% Real Questions
Get 60% Discount on All Products,
Use Coupon: "8w52ceb345"