Accuracy is a measure of how well a classifier can correctly predict the class of an instance. Accuracy is calculated by dividing the number of correct predictions (true positives and true negatives) by the total number of predictions. True positives are instances that are correctly predicted as positive (belonging to the target class). True negatives are instances that are correctly predicted as negative (not belonging to the target class).
AIP-210 PDF/Engine
Printable Format
Value of Money
100% Pass Assurance
Verified Answers
Researched by Industry Experts
Based on Real Exams Scenarios
100% Real Questions
Get 65% Discount on All Products,
Use Coupon: "ac4s65"